Introduction

Fluid Power with Applications, 7th *ed.*, is a great introduction to the field of hydraulics and pneumatics. Most of the equations are algebraic, such as Equation 3-6: T = F R, where the units of torque *T* depend on the units used for force *F* and lever arm *R*. Some equations include constants that are missing their units. For example, Equation 3-7: $HP = \frac{T N}{63,000}$. The units for the constant are $\frac{hp}{in. lb. rpm}$, so the equation only works if you enter torque *T* in units of in.·lb. and rotational speed *N* in units of rpm. This handout lists canned equations used in the textbook and the units for their constants.

Chapter 3

Eq. 3-5,
$$HP = \frac{Fv}{550}$$
 where power HP = hp, force F = lb., velocity v = ft./s, and the constant = $550 \frac{\text{lb. ft.}}{\text{hp s}}$.
Eq. 3-7, $HP = \frac{TN}{63,000}$ where power HP = hp, torque T = in.·lb., rotational speed N = rpm, and the constant = $\frac{63,000 \text{ in.·lb.·rpm}}{\text{hp}}$.
Eq. 3-25, $HHP = \frac{PQ}{1714}$ where hydraulic horsepower HHP = hp, pressure p = psi, flow rate Q = gpm, and the constant = $\frac{1714 \text{ psi·gpm}}{\text{hp}}$.
Eq. 3-29, $H_P = \frac{3950 \text{ HHP}}{Q \text{ SG}}$ where pump head H_P = ft., hydraulic horsepower HHP = hp, flow rate Q = gpm, and the constant = $\frac{3950 \text{ ft.·gpm}}{\text{hp}}$.
Eq. 3-37, Power = $\frac{Tw}{1000}$ where power = kW, torque T = N·m, rotational speed ω = rad/s, and the constant = $\frac{1000 \text{ N·m}}{\text{kW·s}}$.

Chapter 4

Eq. 4-2,
$$N_R = \frac{7740 v D SG}{\mu}$$
 where fluid velocity $v = \text{ft./s}$, pipe diameter $D = \text{in., absolute viscosity } \mu = \text{cP, and the constant} = 7740 \frac{\text{cP} \cdot \text{s}}{\text{ft. in.}}$.
Eq. 4-2M, $N_R = \frac{1000 v D SG}{\mu}$ where fluid velocity $v = \text{m/s}$, pipe diameter $D = \text{mm}$, absolute viscosity $\mu = \text{cP}$, and the constant $= 1000 \frac{\text{cP} \cdot \text{s}}{\text{m} \cdot \text{mm}}$.
Eq. 4-3, $N_R = \frac{7740 v D}{v}$ where fluid velocity $v = \text{ft./s}$, pipe diameter $D = \text{in., kinematic viscosity } v = \text{cP, and the constant} = 7740 \frac{\text{cS} \cdot \text{s}}{\text{ft. in.}}$.
Eq. 4-3, $N_R = \frac{1000 v D}{v}$ where fluid velocity $v = \text{ft./s}$, pipe diameter $D = \text{in., kinematic viscosity } v = \text{cP, and the constant} = 7740 \frac{\text{cS} \cdot \text{s}}{\text{ft. in.}}$.
Eq. 4-3M, $N_R = \frac{1000 v D}{v}$ where fluid velocity $v = \text{m/s}$, pipe diameter $D = \text{mm}$, kinematic viscosity $v = \text{cP}$, and the constant = $1000 \frac{\text{cS} \cdot \text{s}}{\text{m} \cdot \text{mm}}$.
Eq. 4-3M, $N_R = \frac{1000 v D}{v}$ where fluid velocity $v = \text{m/s}$, pipe diameter $D = \text{mm}$, kinematic viscosity $v = \text{cP}$, and the constant = $1000 \frac{\text{cS} \cdot \text{s}}{\text{m} \cdot \text{mm}}$.
Chapter 5

Eq. 5-2,
$$Q_T = \frac{V_D N}{231}$$
 where pump flow rate $Q_T = \text{gpm}$, volumetric displacement $V = \text{in.}^3/\text{rev.}$, rotational speed $N = \text{rpm}$, and the constant $= \frac{231 \text{ in.}^3}{\text{gal.}}$.

© 2013 Barry Dupen

Chapter 6

Eq. 6-5,
$$HP = \frac{vF}{550}$$
 where cylinder power $HP = hp$, cylinder velocity $v = ft/s$, force $F = lb$, and the constant $= \frac{550 \text{ hp} \cdot \text{s}}{\text{ft} \cdot \text{lb}}$.

Chapter 8

Eq. 8-1,
$$Q = 38.1 C A \sqrt{\frac{\Delta p}{SG}}$$
 where flow rate $Q = \text{gpm}$, orifice area $A = \text{in.}^2$, pressure $p = \text{psi}$, and the constant $= \frac{38.1 \text{ gpm}}{\text{in.}^2 \sqrt{\text{psi}}}$.
Eq. 8-1M, $Q = 0.0851 C A \sqrt{\frac{\Delta p}{SG}}$ where flow rate $Q = \text{Lpm}$, orifice area $A = \text{mm}^2$, pressure $p = \text{kPa}$, and the constant $= \frac{0.0851 \text{ Lpm}}{\text{mm}^2 \sqrt{\text{kPa}}}$.

Chapter 13

Eq. 13-8,
$$V_R = \frac{14.7 t (Q_T - Q_C)}{p_{max} - p_{min}}$$
 where receiver size $V_R = \text{ft.}^3$, time $t = \min$, flow rate $Q = \text{scfm}$, pressure $p = \text{psi}$, and the constant = 14.7 psia.
Eq. 13-8M, $V_R = \frac{101 t (Q_T - Q_C)}{p_{max} - p_{min}}$ where receiver size $V_R = \text{m}^3$, time $t = \min$, flow rate $Q = \text{std. m}^3/\text{min.}$, pressure $p = \text{kPa}$, and the constant = 101 kPa_{abs}.
Eq. 13-9, Theoretical power $= \frac{p_{in}Q}{65.4} \left[\left(\frac{p_{out}}{p_{in}} \right)^{0.286} - 1 \right]$ where power = hp, pressure $p = \text{psia}$, flow rate $Q = \text{scfm}$, and the constant $= \frac{65.4 \text{ psi} \cdot \text{scfm}}{\text{hp}}$.
Eq. 13-9M, Theoretical power $= \frac{p_{in}Q}{17.1} \left[\left(\frac{p_{out}}{p_{in}} \right)^{0.286} - 1 \right]$ where power $= \text{kW}$, pressure $p = \text{kPa}_{abs}$, flow rate $Q = \text{std. m}^3/\text{min.}$, and the constant $= \frac{17.1 \text{ kPa} \cdot \text{m}^3}{\text{kW} \cdot \text{min}}$.

Chapter 14

Eq. 14-3,
$$p_f = \frac{0.1025 LQ^2}{3600 CR d^{5.31}}$$
 where pressure drop p_f = psi, pipe length L = ft., flow rate Q = scfm, pipe diameter d = in., one constant = $\frac{0.1025 \text{ in.}^{5.31}}{\text{ft.}^7 \text{ s}^2}$, and the second constant = $\frac{3600 \text{ s}^2}{\text{min.}^2}$.